Periodic solutions of superlinear impulsive differential equations: A geometric approach
نویسندگان
چکیده
منابع مشابه
Periodic Solutions of Superlinear Impulsive Differential Systems
We develop continuation technique to obtain periodic solutions for superlinear planar differential systems of first order with impulses. Our approach was inspired by some works by Capietto, Mawhin and Zanolin in analogous problems without impulses and uses instead of Brouwer degree the much more elementary notion of essential map in the sense of fixed point theory. AMS (MOS) subject classificat...
متن کاملImpulsive differential equations: Periodic solutions and applications
Some people may be laughing when looking at you reading in your spare time. Some may be admired of you. And some may want be like you who have reading hobby. What about your own feel? Have you felt right? Reading is a need and a hobby at once. This condition is the on that will make you feel that you must read. If you know are looking for the book enPDFd impulsive differential equations periodi...
متن کاملPeriodic Solutions of Second-order Nonautonomous Impulsive Differential Equations
The main purpose of this paper is to study the existence of periodic solutions of second order impulsive differential equations with superlinear nonlinear terms. Our result generalizes one of Paul H. Rabinowitz’s existence results of periodic solutions of second order ordinary differential equations to impulsive cases. Mountain Pass Lemma is applied in order to prove our main results. AMS Subje...
متن کاملPeriodic Solutions of a Class of Fourth-Order Superlinear Differential Equations
and Applied Analysis 3 Our main result is as follows. Theorem 2.3. Suppose a x , b x , and F satisfy A , F1 – F3 . Then System 1.2 has infinitely many distinct pairs of solutions zn un, vn , which are critical points of the functional I : X → R, and I zn → ∞ as n → ∞. In this paper, the existence of periodic solutions of a single equation in System 1.1 are extended to the case of equations, and...
متن کاملON THE PERIODIC SOLUTIONS OF A CLASS OF nTH ORDER NONLINEAR DIFFERENTIAL EQUATIONS *
The nth order differential equation x + c (t )x + ƒ( t,x) = e(t),n>3 is considered. Using the Leray-Schauder principle, it is shown that under certain conditions on the functions involved, this equation possesses a periodic solution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2015
ISSN: 0022-0396
DOI: 10.1016/j.jde.2015.01.003